auroras
An aurora sometimes referred to as polar lights, northern lights (aurora borealis) or southern lights (aurora australis), is a natural light display in the Earth's sky, predominantly seen in the high-latitude regions (around the Arctic and Antarctic).
Auroras are produced when the magnetosphere is sufficiently disturbed by the solar wind that the trajectories of charged particles in both solar wind and magnetospheric plasma, mainly in the form of electrons and protons, precipitate them into the upper atmosphere (thermosphere/exosphere) due to Earth's magnetic field, where their energy is lost.
The resulting ionization and excitation of atmospheric constituents emits light of varying color and complexity. The form of the aurora, occurring within bands around both polar regions, is also dependent on the amount of acceleration imparted to the precipitating particles. Precipitating protons generally produce optical emissions as incident hydrogen atoms after gaining electrons from the atmosphere. Proton auroras are usually observed at lower latitudes.
visual forms and colors
Auroras frequently appear either as a diffuse glow or as "curtains" that extend approximately in the east-west direction. At some times, they form "quiet arcs"; at others, they evolve and change constantly. These are called "active aurora".
The most distinctive and brightest are the curtain-like auroral arcs. Each curtain consists of many parallel rays, each lined up with the local direction of the magnetic field, consistent with auroras being shaped by Earth's magnetic field. In situ particle measurements confirm that auroral electrons are guided by the geomagnetic field, and spiral around them while moving toward Earth. The similarity of an auroral display to curtains is often enhanced by folds within the arcs. Arcs can fragment or break up into separate, at times rapidly changing, often rayed features that may fill the whole sky. These are the discrete auroras, which are at times bright enough to read a newspaper by at night and can display rapid subsecond variations in intensity. The diffuse aurora, though, is a relatively featureless glow sometimes close to the limit of visibility. It can be distinguished from moonlit clouds because stars can be seen undiminished through the glow. Diffuse auroras are often composed of patches whose brightness exhibits regular or near-regular pulsations. The pulsation period can be typically many seconds, so is not always obvious. Often there black aurora i.e. narrow regions in diffuse aurora with reduced luminosity. A typical auroral display consists of these forms appearing in the above order throughout the night.
- Red At the highest altitudes, excited atomic oxygen emits at 630 nm (red); low concentration of atoms and lower sensitivity of eyes at this wavelength make this color visible only under more intense solar activity. The low number of oxygen atoms and their gradually diminishing concentration is responsible for the faint appearance of the top parts of the "curtains". Scarlet, crimson, and carmine are the most often-seen hues of red for the auroras.
- Green: At lower altitudes, the more frequent collisions suppress the 630-nm (red) mode: rather the 557.7 nm emission (green) dominates. Fairly high concentration of atomic oxygen and higher eye sensitivity in green make green auroras the most common. The excited molecular nitrogen (atomic nitrogen being rare due to high stability of the N2 molecule) plays a role here, as it can transfer energy by collision to an oxygen atom, which then radiates it away at the green wavelength. (Red and green can also mix together to produce pink or yellow hues.) The rapid decrease of concentration of atomic oxygen below about 100 km is responsible for the abrupt-looking end of the lower edges of the curtains. Both the 557.7 and 630.0 nm wavelengths correspond to forbidden transitions of atomic oxygen, slow mechanism that is responsible for the graduality (0.7 s and 107 s respectively) of flaring and fading.
- Blue: At yet lower altitudes, atomic oxygen is uncommon, and molecular nitrogen and ionized molecular nitrogen take over in producing visible light emission, radiating at a large number of wavelengths in both red and blue parts of the spectrum, with 428 nm (blue) being dominant. Blue and purple emissions, typically at the lower edges of the "curtains", show up at the highest levels of solar activity. The molecular nitrogen transitions are much faster than the atomic oxygen ones.
- Ultraviolet: Ultraviolet radiation from auroras (within the optical window but not visible to virtually all humans) has been observed with the requisite equipment. Ultraviolet auroras have also been seen on Mars, Jupiter and Saturn.
- Infrared: Infrared radiation, in wavelengths that are within the optical window, is also part of many auroras.
- Yellow and pink are a mix of red and green or blue. Other shades of red, as well as orange, may be seen on rare occasions; yellow-green is moderately common. As red, green, and blue are the primary colours of additive synthesis of colours, in theory, practically any colour might be possible, but the ones mentioned in this article comprise a virtually exhaustive list.
source: wikipedia